Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2304144, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581301

RESUMEN

Adoptive cell therapies are dramatically altering the treatment landscape of cancer. However, treatment of solid tumors remains a major unmet need, in part due to limited adoptive cell infiltration into the tumor and in part due to the immunosuppressive tumor microenvironment. The heterogeneity of tumors and presence of nonresponders also call for development of antigen-independent therapeutic approaches. Myeloid cells offer such an opportunity, given their large presence in the immunosuppressive tumor microenvironment, such as in triple negative breast cancer. However, their therapeutic utility is hindered by their phenotypic plasticity. Here, the impressive trafficking ability of adoptively transferred monocytes is leveraged into the immunosuppressive 4T1 tumor to develop an antitumor therapy. To control monocyte differentiation in the tumor microenvironment, surface-adherent "backpacks" stably modified with interferon gamma (IFNγ) are developed to stimulate macrophage plasticity into a pro-inflammatory, antitumor phenotype, a strategy as referred to as Ornate Polymer backpacks on Tissue Infiltrating Monocytes (OPTIMs). Treatment with OPTIMs substantially reduces tumor burden in a mouse 4T1 model and significantly increases survival. Cytokine and immune cell profiling reveal that OPTIMs remodeled the tumor microenvironment into a pro-inflammatory state.

2.
PNAS Nexus ; 3(1): pgad434, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38187808

RESUMEN

Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.

3.
ACS Nano ; 17(16): 15918-15930, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37565806

RESUMEN

Natural killer (NK) cell therapies have emerged as a potential therapeutic approach to various cancers. Their efficacy, however, is limited by their low persistence and anergy. Current approaches to sustain NK cell persistence in vivo include genetic modification, activation via pretreatment, or coadministration of supporting cytokines or antibodies. Such supporting therapies exhibit limited efficacy in vivo, in part due to the reversal of their effect within the immunosuppressive tumor microenvironment and off-target toxicity. Here, we report a material-based approach to address this challenge. Specifically, we describe the use of polymeric micropatches as a platform for sustained, targeted activation of NK cells, an approach referred to as microparticles as cell engagers (MACE). Poly(lactide-co-glycolic) acid (PLGA) micropatches, 4-8 µm in diameter and surface-modified with NK cell receptor targeting antibodies, exhibited strong adhesion to NK cells and induced their activation without the need of coadministered cytokines. The activation induced by MACE was greater than that induced by nanoparticles, attesting to the crucial role of MACE geometry in the activation of NK cells. MACE-bound NK cells remained viable and exhibited trans-endothelial migration and antitumor activity in vitro. MACE-bound NK cells activated T cells, macrophages, and dendritic cells in vitro. Adoptive transfer of NK-MACE also demonstrated superior antitumor efficacy in a mouse melanoma lung metastasis model compared to unmodified NK cells. Overall, MACE offers a simple, scalable, and effective way of activating NK cells and represents an attractive platform to improve the efficacy of NK cell therapy.


Asunto(s)
Melanoma , Neoplasias , Animales , Ratones , Polímeros/metabolismo , Células Asesinas Naturales , Neoplasias/metabolismo , Inmunoterapia Adoptiva , Melanoma/metabolismo , Citocinas/metabolismo , Microambiente Tumoral
4.
Adv Mater ; : e2210059, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809574

RESUMEN

Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.

5.
Lab Chip ; 22(12): 2315-2330, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35593127

RESUMEN

Double emulsion droplets (DEs) are water/oil/water droplets that can be sorted via fluorescence-activated cell sorting (FACS), allowing for new opportunities in high-throughput cellular analysis, enzymatic screening, and synthetic biology. These applications require stable, uniform droplets with predictable microreactor volumes. However, predicting DE droplet size, shell thickness, and stability as a function of flow rate has remained challenging for monodisperse single core droplets and those containing biologically-relevant buffers, which influence bulk and interfacial properties. As a result, developing novel DE-based bioassays has typically required extensive initial optimization of flow rates to find conditions that produce stable droplets of the desired size and shell thickness. To address this challenge, we conducted systematic size parameterization quantifying how differences in flow rates and buffer properties (viscosity and interfacial tension at water/oil interfaces) alter droplet size and stability, across 6 inner aqueous buffers used across applications such as cellular lysis, microbial growth, and drug delivery, quantifying the size and shell thickness of >22 000 droplets overall. We restricted our study to stable single core droplets generated in a 2-step dripping-dripping formation regime in a straightforward PDMS device. Using data from 138 unique conditions (flow rates and buffer composition), we also demonstrated that a recent physically-derived size law of Wang et al. can accurately predict double emulsion shell thickness for >95% of observations. Finally, we validated the utility of this size law by using it to accurately predict droplet sizes for a novel bioassay that requires encapsulating growth media for bacteria in droplets. This work has the potential to enable new screening-based biological applications by simplifying novel DE bioassay development.


Asunto(s)
Emulsiones , Citometría de Flujo , Tensión Superficial
6.
Eur J Pharm Sci ; 172: 106154, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227840

RESUMEN

Critically ill and anesthetized patients commonly receive life-sustaining medications by pump-driven continuous intravenous infusion. Microinfusion refers to delivering concentrated drugs with low flow carriers to conserve fluid administration. Most infused medications are water-soluble. Delivery onset lag times have been identified for microinfusions of water-soluble drugs or experimental surrogates. Drugs may be formulated as emulsions. Initiation of emulsion microinfusions has not been described. We tested in vitro the hypothesis that an emulsion's physical characteristics would influence its microinfusion delivery onset. We adapted an established in vitro model of pump-driven continuous intravenous microinfusion to compare the delivery of methylene blue as a surrogate for water-soluble drugs and a 10% lipid emulsion as a surrogate for a drug formulated as an emulsion. The drug surrogates joined the carrier with carrier flow vertically upwards, vertically downwards or horizontally. We measured the times to 5%, 50% and 95% of plateau delivery. Emulsion entry into a vertical (upwards) carrier flow resulted in a rapid initial emulsion delivery exceeding predictions of delivery models. Emulsion entry into both horizontal and vertical (downwards) carrier flows resulted in long lag times to steady state. Methylene blue delivery was unaffected by carrier flow orientation. Initiating microinfusion emulsion delivery with upward flow can result in a relative bolus, whereas long delivery lags would be expected with horizontal or downwards flow. An emulsion might carry a high potency drug having significant physiologic effects, e. g. clevidipine. Unrecognized, differences in initial emulsion delivery kinetics depending on carrier flow orientation may have clinical implications for both efficacy and safety.


Asunto(s)
Sistemas de Liberación de Medicamentos , Administración Intravenosa , Sistemas de Liberación de Medicamentos/métodos , Emulsiones , Diseño de Equipo , Humanos , Infusiones Intravenosas
7.
J Colloid Interface Sci ; 576: 252-263, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32422449

RESUMEN

HYPOTHESIS: The properties of oil-in-water emulsions are influenced by the rheology of the aqueous phase (continuous phase) and the rheology of the oil-water interfaces. The bulk and interfacial rheological parameters can be tuned by incorporating nanoparticles (NPs) featuring different surface chemistries and polymers with different chemical or physical structures. Therefore, NPs and polymers can be used to formulate emulsions with different properties. EXPERIMENTS: The viscoelasticity at the oil-(aqueous phase) interface and the bulk viscoelasticity of aqueous phase were investigated in the presence of different fumed silica NPs (i.e., hydrophilic, hydrophobic, and slightly hydrophobic) and polymers with two different molecular weights. Bulk and interfacial viscoelastic properties were investigated, employing oscillatory rheological techniques. Furthermore, morphology and stability of the oil-in-(aqueous nanofluid) emulsions were explored utilizing bulk emulsification and single drop coalescence experiments. FINDINGS: Introducing polymers into the aqueous nanofluids had opposite effects on bulk and interfacial viscoelasticity. Despite the significant increase in bulk viscoelasticity upon addition of polymers into the aqueous nanofluids, the interfacial viscoelasticity and emulsion stability considerably decreased. The slightly hydrophobic NP nanofluids without polymers showed no bulk viscoelasticity, but displayed the highest interfacial viscoelasticity and emulsion stability. This provided us a unique opportunity to unravel the importance of bulk and interfacial viscoelasticity on oil-in-water emulsification and proved the dominant role of interfacial viscoelasticity over bulk viscoelasticity on emulsion stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...